06-30 講座預告:函數型數據分析

發布時間:2023-06-29

 

題目一:函數型數據分析

内容簡介:介紹函數型數據分析,指出其與多元數據分析相比所具有的優勢。進一步介紹函數型數據分析的一些重要方法,包括均值函數、協方差函數的估計,函數型預測等。

報告人:陳迪榮

報告人簡介:北京航空航天大學數學科學學院教授,博士生導師。19821月獲學士學位(華中師範大學),19927月獲博士學位(北京師範大學)。先後從事函數逼近論、小波分析、統計學習理論和函數型數據分析方向研究,取得了具有國際先進水平的成果。先後主持國家自然科學基金8項,“863”課題3項,“973”計劃子課題1項,航天應用數學基金1項。發表SCI論文80篇,其中多篇發表在權威刊物Appl. Comput. Harmon. Anal.Found. Comput. Math. SIAM J. Math. Anal.SIAM J. Numer. Anal.IEEE Trans. Automat. ControlIEEE Trans. Inform. TheoryJ. Mach. Learn. Res.等上,單篇論文被SCI引用最高200次。獲教育部自然科學二等獎、北京市教學成果一等獎。曾獲聘北航藍天學者特聘教授(2006年),獲北航立德樹人卓越獎(2022年)。迄今為止,先後擔任三屆校學術委員會委員。

 

題目二:Low tubal rank tensor sensing and robust PCA from quantized measurements

内容簡介:Low-rank tensor Sensing (LRTS) is a natural extension of low-rank matrix Sensing (LRMS) to high-dimensional arrays, which aims to reconstruct an underlying tensor X from incomplete linear measurements M(X). However, LRTS ignores the error caused by quantization, limiting its application when the quantization is low-level. Under the tensor Singular Value Decomposition (t-SVD) framework, two recovery methods are proposed. These methods can recover a real tensor X with tubal rank r from m random Gaussian binary measurements with errors decaying at a polynomial speed of the oversampling factor. To improve the convergence rate, we develop a new quantization scheme under which the convergence rate can be accelerated to an exponential function of lambda. Quantized Tensor Robust Principal Component Analysis (Q-TRPCA) aims to recover a low-rank tensor and a sparse tensor from noisy, quantized, and sparsely corrupted measurements Anonconvex constrained maximum likelihood (ML) estimation method is proposed for Q-TRPCA. We provide an upper bound on the Frobenius norm of tensor estimation error under this method. Making use of tools in information theory, we derive a theoretical lower bound on the best achievable estimation error from unquantized measurements. Compared with the lower bound, the upper bound on the estimation error is nearly order-optimal. We further develop an efficient convex ML estimation scheme for Q-TRPCA based on the tensor nuclear norm (TNN) constraint. This method is more robust to sparse noises than the latter nonconvex ML estimation approach. Numerical experiments verify our results, and the applications to real-world data demonstrate the promising performance of the proposed methods.

報告人:王建軍

報告人簡介:博士,三級教授,博士生導師,重慶市學術技術帶頭人,重慶市創新創業領軍人才,巴渝學者特聘教授,重慶市工業與應用數學學會副理事長,重慶市運籌學會副理事長,美國數學評論評論員,重慶數學會常務理事,曾獲重慶市自然科學獎,主要研究方向為:高維數據建模、壓縮感知、低秩張量分析、神經網絡與函數逼近等。在神經網絡逼近複雜性和稀疏逼近等方面有較好的學術積累。已在IEEE TPAMI5),IEEE TITIEEE TIPIEEE TNNLS3),ACHA2),IPPR, KBS, AAAIIEEE SPL(3), SP3),NNICASSP(5), 中國科學(5, 計算機學報,數學學報,電子學報(3)等國内外頂級學術期刊發表90餘篇學術論文,授權發明專利1項。主持國家自然科學基金5項, 應邀做大會特邀報告30餘次。

 

  間:2023630日(周五)上午 930

  點:騰訊會議:196-505-349

 

熱烈歡迎廣大師生參加!

 

 

太阳集团1088vip

2023629